
Multiple covariate distance 
sampling (MCDS)

• Aim:  Model the effect of additional covariates on detection probability, in 
addition to distance, while assuming probability of detection at zero distance is 1

• References:
• Marques (F) and Buckland (2004) Covariate models for the detection function.  Chapter 3 in Buckland et al. 

(eds). Advanced Distance Sampling.
• Marques (T) et al. (2007) Improving estimates of bird density using multiple covariate distance sampling. 

The Auk 127: 1229-1243.
• Section 5.3 of Buckland et al. (2015) Distance Sampling: Methods and Applications



Contents
• Why additional covariates?
• Multiple covariate models
• Estimating abundance
• MCDS in the Distance package
• Complications

• Clustered populations

• MCDS analysis guidelines



x

g(x)

x

g(x)

In conventional distance sampling (CDS) 
analysis all factors affecting detectability, 
except distance, are ignored

In reality, many factors may 
affect detectability

Sources of heterogeneity:
Object : species, sex, cluster size
Effort: observer, habitat, weather

Why additional covariates?



Examples of heterogeneity 1
Effect of time of day on Rufous Fantail birds in Micronesia (point transects). Ramsey et. al. 1987. 
Biometrics 43:1-11
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Examples of heterogeneity 2

Effect of sea state (and other covariates) on sea turtles in the Eastern Tropical Pacific 
(shipboard line transects). Beavers and Ramsey, 1998, J. Wildl. Manage. 63: 948-957



Examples of heterogeneity 3
Effect of cluster size on beer can detectability. Otto and Pollock, 1990, Biometrics 46: 239-245



Why worry about heterogeneity?

• Pooling robustness works for all but extreme levels of heterogeneity

• Potential bias if density is estimated at a ‘lower level’ than detection function (e.g. 
density by geographic region, detection function pooled)

• Could potentially increase precision of detection function estimate

• Interest in sources of heterogeneity in their own right (e.g. group size)

In CDS, we use models that are pooling robust, so why worry about heterogeneity?



Pooling robustness
Individuals can have quite different detection functions, but this produces little bias (up to a point!)
‘Pooling robustness’ = robust to pooling of multiple detection functions
e.g. Simulation study (unpublished)  Truth = 1000 animals
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Scenario 1: animals have a 
gamma distribution of detection 
functions between min and max 
shown.

Mean estimate from simulation: 
984 animals (SE 2.3). Bias -1.6%

Scenario 2: half of animals have max 
detection function, half have 
minimum.

Mean estimate from simulation: 976 
animals (SE 2.7). Bias -2.4%



0-99

≥500 animals

100-499

Dealing with heterogeneity
Stratification

Requires estimating separate detection function parameters 
for each stratum, 

• often not possible due to lack of data

Model as covariates in detection function

Allows a more parsimonious approach:

• can model effect of numerical covariates

• can ‘share information’ about detection function 
scale parameter between covariate levels
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g(x) =  Pr[animal at distance x is detected]

Key function

jth series adjustment term

Scaling constant to ensure g(0) = 1

Multiple covariate models
• Recap of CDS models



CDS models continued

1)(xk








 


2

2

2
x

xk exp)(

Key functions

Hazard rate

Half-normal

Uniform

Series adjustments

Cosine cos(jπxs)

Polynomial xs
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Hermite poly.   Hj(xs)

xs are scaled distances
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Modelling with covariates 
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g(x,z) = Pr[animal at distance x and covariates z is detected]

Assume the covariates affect the scale of the key function, not its shape. So choose key 
functions with a scale parameter

Let

e.g. Hazard rate

Half normal

k is used here to denote the “key” function



Modelling with covariates
Example: Dolphin tuna vessel data

Model: half-normal, with no adjustments

Covariate: cluster size as factor (3 levels)
with dummy variables, sd1 and sd2 0-99

≥500 animals

100-499
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Estimating abundance without covariates using 
Horvitz-Thompson estimator

Recall that f(x) = pdf of observed x’s ௚(௫)
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Because g(0)=1 by assumption, then f(0) = g(0)/µ = 1/μ = 1/ wPa
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Estimating abundance with covariates

Because g(0,z)=1 by assumption, then ௚(଴,𝒛)
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MCDS in Distance

In ds command, specify covariates in formula argument

ds(data, key, formula)

E.g. ds(data=Dolphin, key=“hn”, formula=~size.class)

Covariate type:
– Factor covariates classify the data into distinct classes or levels.  Can be numerical or text.  One 

parameter per factor level.
– Non-factor (i.e., continuous) covariates must be numerical (integer or decimal).  One parameter per 

covariate + 1 for the intercept.



When cluster size is a covariate:

• Distance recognizes cluster size because column is called `size` (i.e. reserved word)

E.g. ds(data=Dolphin, key=“hn”, formula=~size)

Complication: Clustered populations
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Estimate of group size is given by
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MCDS analysis guidelines
Choose covariates that are:
• independent of distance
• not strongly correlated with each other

Specifying the model:
• factor covariates generally harder to fit
• check convergence and monotonicity
• add only one covariate at a time
• where necessary, use starting values and bounds for parameters
• consider reducing the truncation distance, w, if more than 5% of the Pa(zi)
are <0.2, or if any are less than 0.1


